

IGLSynth: Automatic Strategy Synthesis Library

IGLSynth is a high-level Python API for solving Infinite Games and Logic-based strategy Synthesis. It provides
an easy interface to

	Define two-player games-on-graphs.

	Assign tasks to players using formal logic.

	Write solvers to compute winning strategies in the game.

IGLSynth consists of 4 modules,

	game: Defines classes representing deterministic/stochastic and concurrent/turn-based games as well as hypergames.

	logic: Defines classes representing formal logic such as Propositional Logic, Linear Temporal Logic etc.

	solver: Defines solvers for different games such as ZielonkaSolver etc.

	util: Defines commonly used classes such as Graph.

Indices and tables

IGLSynth Documentation

	Home Page

	Examples
	Game Graph Construction

	API Documentation
	Game Module API

	Logic Module API

	Utilities API

Current release and documentation update date:

	Release

	0.2.1

	Date

	Nov 20, 2019

	Index

	Module Index

	Search Page

IGLSynth Examples

	Game Graph Construction

Game Graph

Hello

IGLSynth API

	Game Module API

	Logic Module API

	Utilities API

Game Module API

	Overview

	game.core

	game.game

Overview

Will be written..

Game Module

Global Variables

	
iglsynth.game.core.TURN_BASED = 'Turn-based'

	Macro to define concurrent transition system and game.

Action

	
class iglsynth.game.core.Action(name=None, func=None)

	Bases: object

Represents an action.
An action acts on a state (of TSys or Game etc.) to produce a new state.

	Parameters

	
	name – (str) Name of the action.

	func – (function) An implementation of action.

Note

Acceptable function templates are,

	st <- func(st)

	st <- func(st, *args)

	st <- func(st, **kwargs)

	st <- func(st, *args, **kwargs)

Game Module

Two-Player Deterministic Game

Logic Module API

	Overview

	logic.core

	logic.ltl

Logic Module

in progress…

Logic Module

Global Variables

	
iglsynth.logic.core.TRUE = AP(name=true)

	

	
iglsynth.logic.core.FALSE = AP(name=false)

	

ILogic (Interface Class)

SyntaxTree

Atomic Propositions

Alphabet

Propositional Logic Formulas

Linear Temporal Logic

Utilities API

	Overview

	game.graph

	game.spot

Utilities

in proigress..

Utilities

Graph Class

	
class iglsynth.util.graph.Graph(vtype=None, etype=None, graph=None, file=None)

	Base class to represent graph-based objects in IGLSynth.

	Graph may represent a Digraph or a Multi-Digraph.

	Graph.Edge may represent a self-loop, i.e. source = target.

	Graph stores objects of Graph.Vertex and Graph.Edge classes or
their sub-classes, which users may define.

	Graph.Vertex and Graph.Edge may have attributes, which represent the vertex
and edge properties of the graph.

	Parameters

	
	vtype – (class) Class representing vertex objects.

	etype – (class) Class representing edge objects.

	graph – (Graph) Copy constructor. Copies the input graph into new Graph object.

	file – (str) Name of file (with absolute path) from which to load the graph.

Todo

The copy-constructor and load-from-file functionality.

	
class Edge(u: iglsynth.util.graph.Graph.Vertex, v: iglsynth.util.graph.Graph.Vertex)

	Base class for representing a edge of graph.

	Graph.Edge represents a directed edge.

	Two edges are equal, if the two Graph.Edge objects are same.

	Parameters

	
	u – (Graph.Vertex or its sub-class) Source vertex of edge.

	v – (Graph.Vertex or its sub-class) Target vertex of edge.

	
source

	Returns the source vertex of edge.

	
target

	Returns the target vertex of edge.

	
class Vertex

	Base class for representing a vertex of graph.

	Graph.Vertex constructor takes no arguments.

	Two vertices are equal, if the two Graph.Vertex objects are same.

	
add_edge(e: iglsynth.util.graph.Graph.Edge)

	Adds an edge to the graph.
Both the vertices must be present in the graph.

	Raises

	
	AttributeError – When at least one of the vertex is not in the graph.

	AssertionError – When argument e is not an Graph.Edge object.

	
add_edges(ebunch: Iterable[Graph.Edge])

	Adds a bunch of edges to the graph.
Both the vertices of all edges must be present in the graph.

	Raises

	
	AttributeError – When at least one of the vertex is not in the graph.

	AssertionError – When argument e is not an Graph.Edge object.

	
add_vertex(v: iglsynth.util.graph.Graph.Vertex)

	Adds a new vertex to graph.
An attempt to add existing vertex will be ignored, with a warning.

	Parameters

	v – (Graph.Vertex) Vertex to be added to graph.

	
add_vertices(vbunch: Iterable[Graph.Vertex])

	Adds a bunch of vertices to graph.
An attempt to add existing vertex will be ignored, with a warning.

	Parameters

	vbunch – (Iterable over Graph.Vertex) Vertices to be added to graph.

	
edges

	Returns an iterator over edges in graph.

	
in_edges(v: Union[Graph.Vertex, Iterable[Graph.Vertex]])

	Returns an iterator over incoming edges to given vertex or vertices.
In case of vertices, the iterator is defined over the union of set of
incoming edges of individual vertices.

	Parameters

	v – (Graph.Vertex) Vertex of graph.

	Raises

	AssertionError – When v is neither a Graph.Vertex object
nor an iterable of Graph.Vertex objects.

	
in_neighbors(v: Union[Graph.Vertex, Iterable[Graph.Vertex]])

	Returns an iterator over sources of incoming edges to given vertex or vertices.
In case of vertices, the iterator is defined over the union of set of
incoming edges of individual vertices.

	Parameters

	v – (Graph.Vertex) Vertex of graph.

	Raises

	AssertionError – When v is neither a Graph.Vertex object
nor an iterable of Graph.Vertex objects.

	
num_edges

	Returns the number of edges in graph.

	
num_vertices

	Returns the number of vertices in graph.

	
out_edges(v: Union[Graph.Vertex, Iterable[Graph.Vertex]])

	Returns an iterator over outgoing edges to given vertex or vertices.
In case of vertices, the iterator is defined over the union of set of
incoming edges of individual vertices.

	Parameters

	v – (Graph.Vertex) Vertex of graph.

	Raises

	AssertionError – When v is neither a Graph.Vertex object
nor an iterable of Graph.Vertex objects.

	
out_neighbors(v: Union[Graph.Vertex, Iterable[Graph.Vertex]])

	Returns an iterator over targets of incoming edges to given vertex or vertices.
In case of vertices, the iterator is defined over the union of set of
incoming edges of individual vertices.

	Parameters

	v – (Graph.Vertex) Vertex of graph.

	Raises

	AssertionError – When v is neither a Graph.Vertex object
nor an iterable of Graph.Vertex objects.

	
rm_edge(e: iglsynth.util.graph.Graph.Edge)

	Removes an edge from the graph.
An attempt to remove a non-existing edge will be ignored, with a warning.

	Parameters

	e – (Graph.Edge) Edge to be removed.

	
rm_edges(ebunch: Iterable[Graph.Edge])

	Removes a bunch of edges from the graph.
An attempt to remove a non-existing edge will be ignored, with a warning.

	Parameters

	ebunch – (Iterable over Graph.Edge) Edges to be removed.

	
rm_vertex(v: iglsynth.util.graph.Graph.Vertex)

	Removes a vertex from the graph.
An attempt to remove a non-existing vertex will be ignored, with a warning.

	Parameters

	v – (Graph.Vertex) Vertex to be removed.

	
rm_vertices(vbunch: Iterable[Graph.Vertex])

	Removes a bunch of vertices from the graph.
An attempt to remove a non-existing vertex will be ignored, with a warning.

	Parameters

	vbunch – (Iterable over Graph.Vertex) Vertices to be removed.

	
vertices

	Returns an iterator over vertices in graph.

Utilities

Spot Formulas

 Python Module Index

 e |
 i

 		 	

 		
 e	

 	
 	
 examples	

 		 	

 		
 i	

 	[image: -]
 	
 iglsynth	

 	
 	
 iglsynth.logic	

 	
 	
 iglsynth.util	

Index

 A
 | E
 | F
 | G
 | I
 | N
 | O
 | R
 | S
 | T
 | V

A

 	
 	Action (class in iglsynth.game.core)

 	add_edge() (iglsynth.util.graph.Graph method)

 	
 	add_edges() (iglsynth.util.graph.Graph method)

 	add_vertex() (iglsynth.util.graph.Graph method)

 	add_vertices() (iglsynth.util.graph.Graph method)

E

 	
 	edges (iglsynth.util.graph.Graph attribute)

 	
 	examples (module)

F

 	
 	FALSE (in module iglsynth.logic.core)

G

 	
 	Graph (class in iglsynth.util.graph)

 	
 	Graph.Edge (class in iglsynth.util.graph)

 	Graph.Vertex (class in iglsynth.util.graph)

I

 	
 	iglsynth (module), [1]

 	iglsynth.logic (module)

 	
 	iglsynth.util (module)

 	in_edges() (iglsynth.util.graph.Graph method)

 	in_neighbors() (iglsynth.util.graph.Graph method)

N

 	
 	num_edges (iglsynth.util.graph.Graph attribute)

 	
 	num_vertices (iglsynth.util.graph.Graph attribute)

O

 	
 	out_edges() (iglsynth.util.graph.Graph method)

 	
 	out_neighbors() (iglsynth.util.graph.Graph method)

R

 	
 	rm_edge() (iglsynth.util.graph.Graph method)

 	rm_edges() (iglsynth.util.graph.Graph method)

 	
 	rm_vertex() (iglsynth.util.graph.Graph method)

 	rm_vertices() (iglsynth.util.graph.Graph method)

S

 	
 	source (iglsynth.util.graph.Graph.Edge attribute)

T

 	
 	target (iglsynth.util.graph.Graph.Edge attribute)

 	
 	TRUE (in module iglsynth.logic.core)

 	TURN_BASED (in module iglsynth.game.core)

V

 	
 	vertices (iglsynth.util.graph.Graph attribute)

 _static/down.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 IGLSynth: Automatic Strategy Synthesis Library

 		
 Examples

 		
 Game Graph Construction

 		
 API Documentation

 		
 Game Module API

 		
 Overview

 		
 game.core

 		
 game.game

 		
 Logic Module API

 		
 Overview

 		
 logic.core

 		
 logic.ltl

 		
 Utilities API

 		
 Overview

 		
 game.graph

 		
 game.spot

