

    
      
          
            
  
IGLSynth: Automatic Strategy Synthesis Library

IGLSynth is a high-level Python API for solving Infinite Games and Logic-based strategy Synthesis. It provides
an easy interface to



	Define two-player games-on-graphs.


	Assign tasks to players using formal logic.


	Write solvers to compute winning strategies in the game.













IGLSynth consists of 4 modules,



	game: Defines classes representing deterministic/stochastic and concurrent/turn-based games as well as hypergames.


	logic: Defines classes representing formal logic such as Propositional Logic, Linear Temporal Logic etc.


	solver: Defines solvers for different games such as ZielonkaSolver etc.


	util: Defines commonly used classes such as Graph.
















Indices and tables


IGLSynth Documentation


	Home Page

	Installation Instructions
	Ubuntu 19.04 or above

	Docker Image (other OS)

	Docker Image for Developers





	API Documentation
	Game Module API

	Logic Module API

	Utilities API

	Solver Module API





	Examples
	Game on Graph from Scratch

	Game on Graph using TSys and LTL

	Defining Logic Formulas





	Release Notes
	0.2.4 (Proposed)

	0.2.3 ()

	0.2.2 (17 November 2019)

	0.2.1 (16 November 2019)

	0.1.0 (07 August 2019)









Current release and documentation update date:


	Release

	0.2.3



	Date

	Nov 26, 2019






	Index


	Module Index


	Search Page










          

      

      

    

 


  

    
      
          
            
  
Installation Instructions

IGLSynth requires Python (>= 3.7) and spot (>=2.7).
The recommended operating system is Ubuntu 19.04 or above, which ships with Python 3.7.
This allows spot and iglsynth to be installed directly using apt-get and pip, respectively.

If you want to use a different operating system, docker is the way to go! Please refer to the
docker installation instructions below.


Ubuntu 19.04 or above

First, install spot using instructions given at install spot [https://spot.lrde.epita.fr/install.html].

Then, install IGLSynth:

$ pip3 install iglsynth








Docker Image (other OS)

When using some other OS where either spot or iglsynth is not installed,
it is recommended to use Docker [https://www.docker.com/]
images with an Python IDE such as PyCharm [https://www.jetbrains.com/pycharm/].
Note that using PyCharm is not necessary, but definitely makes life easy!!

Assuming Docker client is already installed on your OS, IGLSynth docker image can be
downloaded by running:

$ docker pull abhibp1993/iglsynth





The instructions to set up remote interpreter are given at
Configure a Remote Interpreter using Docker [https://www.jetbrains.com/help/pycharm/using-docker-as-a-remote-interpreter.html].

The above image also has numpy, matplotlib pre-installed.




Docker Image for Developers

This section is only for developers of IGLSynth.

IGLSynth development requires additional tools such as  pytest (testing), pytest-cov
(coverage checking), sphinx (automatic documentation), sphinx_rtd_theme (theme for sphinx documentation).
These all tools are installed in the developer image of docker (tagged dev), in addition to spot.

Note: IGLSynth is NOT installed in developer’s docker image. Developers are expected to mount
the necessary folders for development.

You can download the developer image of IGLSynth by running:

$ docker pull abhibp1993/iglsynth:dev





and configure the remote interpreter with PyCharm using instructions given at
Configure a Remote Interpreter using Docker [https://www.jetbrains.com/help/pycharm/using-docker-as-a-remote-interpreter.html].







          

      

      

    

 


  

    
      
          
            
  
IGLSynth API



	Game Module API

	Logic Module API

	Utilities API

	Solver Module API









          

      

      

    

 


  

    
      
          
            
  
Game Module API



	Overview

	game.core

	game.game









          

      

      

    

 


  

    
      
          
            
  
Overview

Will be written..





          

      

      

    

 


  

    
      
          
            
  
Game Module




Global Variables


	
iglsynth.game.core.TURN_BASED = 'Turn-based'

	Macro to define concurrent transition system and game.










Action


	
class iglsynth.game.core.Action(name=None, func=None)

	Bases: object

Represents an action.
An action acts on a state (of TSys or Game etc.) to produce a new state.


	Parameters

	
	name – (str) Name of the action.


	func – (function) An implementation of action.









Note

Acceptable function templates are,


	st <- func(st)


	st <- func(st, *args)


	st <- func(st, **kwargs)


	st <- func(st, *args, **kwargs)
















          

      

      

    

 


  

    
      
          
            
  
Game Module


Two-Player Deterministic Game







          

      

      

    

 


  

    
      
          
            
  
Logic Module API



	Overview

	logic.core

	logic.ltl









          

      

      

    

 


  

    
      
          
            
  
Logic Module

in progress…





          

      

      

    

 


  

    
      
          
            
  
Logic Module


Global Variables


	
iglsynth.logic.core.TRUE = AP(name=true)

	




	
iglsynth.logic.core.FALSE = AP(name=false)

	








ILogic (Interface Class)






SyntaxTree






Atomic Propositions






Alphabet






Propositional Logic Formulas







          

      

      

    

 


  

    
      
          
            
  
Linear Temporal Logic





          

      

      

    

 


  

    
      
          
            
  
Utilities API



	Overview

	game.graph

	game.spot









          

      

      

    

 


  

    
      
          
            
  
Utilities

in proigress..





          

      

      

    

 


  

    
      
          
            
  
Utilities


Graph Class


	
class iglsynth.util.graph.Graph(vtype=None, etype=None, graph=None, file=None)

	Base class to represent graph-based objects in IGLSynth.



	Graph may represent a Digraph or a Multi-Digraph.


	Graph.Edge may represent a self-loop, i.e. source = target.


	Graph stores objects of Graph.Vertex and Graph.Edge classes or
their sub-classes, which users may define.


	Graph.Vertex and Graph.Edge may have attributes, which represent the vertex
and edge properties of the graph.








	Parameters

	
	vtype – (class) Class representing vertex objects.


	etype – (class) Class representing edge objects.


	graph – (Graph) Copy constructor. Copies the input graph into new Graph object.


	file – (str) Name of file (with absolute path) from which to load the graph.









Todo

The copy-constructor and load-from-file functionality.




	
class Edge(u: iglsynth.util.graph.Graph.Vertex, v: iglsynth.util.graph.Graph.Vertex)

	Base class for representing a edge of graph.


	Graph.Edge represents a directed edge.


	Two edges are equal, if the two Graph.Edge objects are same.





	Parameters

	
	u – (Graph.Vertex or its sub-class) Source vertex of edge.


	v – (Graph.Vertex or its sub-class) Target vertex of edge.









	
source

	Returns the source vertex of edge.






	
target

	Returns the target vertex of edge.










	
class Vertex

	Base class for representing a vertex of graph.


	Graph.Vertex constructor takes no arguments.


	Two vertices are equal, if the two Graph.Vertex objects are same.









	
add_edge(e: iglsynth.util.graph.Graph.Edge)

	Adds an edge to the graph.
Both the vertices must be present in the graph.


	Parameters

	e – (Graph.Edge) An edge to be added to the graph.



	Raises

	
	AttributeError – When at least one of the vertex is not in the graph.


	AssertionError – When argument e is not an Graph.Edge object.













	
add_edges(ebunch: Iterable[Graph.Edge])

	Adds a bunch of edges to the graph.
Both the vertices of all edges must be present in the graph.


	Raises

	
	AttributeError – When at least one of the vertex is not in the graph.


	AssertionError – When argument e is not an Graph.Edge object.













	
add_vertex(v: iglsynth.util.graph.Graph.Vertex)

	Adds a new vertex to graph.
An attempt to add existing vertex will be ignored, with a warning.


	Parameters

	v – (Graph.Vertex) Vertex to be added to graph.










	
add_vertices(vbunch: Iterable[Graph.Vertex])

	Adds a bunch of vertices to graph.
An attempt to add existing vertex will be ignored, with a warning.


	Parameters

	vbunch – (Iterable over Graph.Vertex) Vertices to be added to graph.










	
edges

	Returns an iterator over edges in graph.






	
get_edges(u: iglsynth.util.graph.Graph.Vertex, v: iglsynth.util.graph.Graph.Vertex)

	Returns all edges with source u and target v.


	Parameters

	
	u – (Graph.Vertex) Vertex of the graph.


	v – (Graph.Vertex) Vertex of the graph.






	Returns

	(iterator(Graph.Edge)) Edges between u, v.










	
has_edge(e: iglsynth.util.graph.Graph.Edge)

	Checks whether the graph has the given edge or not.


	Parameters

	e – (Graph.Edge) An edge to be checked for containment in the graph.



	Returns

	(bool) True if the graph has the given edge, False otherwise.










	
has_vertex(v: iglsynth.util.graph.Graph.Vertex)

	Checks whether the graph has the given vertex or not.


	Parameters

	v – (Graph.Vertex) Vertex to be checked for containment.



	Returns

	(bool) True if given vertex is in the graph, else False.










	
in_edges(v: Union[Graph.Vertex, Iterable[Graph.Vertex]])

	Returns an iterator over incoming edges to given vertex or vertices.
In case of vertices, the iterator is defined over the union of set of
incoming edges of individual vertices.


	Parameters

	v – (Graph.Vertex) Vertex of graph.



	Raises

	AssertionError – When v is neither a Graph.Vertex object
nor an iterable of Graph.Vertex objects.










	
in_neighbors(v: Union[Graph.Vertex, Iterable[Graph.Vertex]])

	Returns an iterator over sources of incoming edges to given vertex or vertices.
In case of vertices, the iterator is defined over the union of set of
incoming edges of individual vertices.


	Parameters

	v – (Graph.Vertex) Vertex of graph.



	Raises

	AssertionError – When v is neither a Graph.Vertex object
nor an iterable of Graph.Vertex objects.










	
num_edges

	Returns the number of edges in graph.






	
num_vertices

	Returns the number of vertices in graph.






	
out_edges(v: Union[Graph.Vertex, Iterable[Graph.Vertex]])

	Returns an iterator over outgoing edges to given vertex or vertices.
In case of vertices, the iterator is defined over the union of set of
incoming edges of individual vertices.


	Parameters

	v – (Graph.Vertex) Vertex of graph.



	Raises

	AssertionError – When v is neither a Graph.Vertex object
nor an iterable of Graph.Vertex objects.










	
out_neighbors(v: Union[Graph.Vertex, Iterable[Graph.Vertex]])

	Returns an iterator over targets of incoming edges to given vertex or vertices.
In case of vertices, the iterator is defined over the union of set of
incoming edges of individual vertices.


	Parameters

	v – (Graph.Vertex) Vertex of graph.



	Raises

	AssertionError – When v is neither a Graph.Vertex object
nor an iterable of Graph.Vertex objects.










	
rm_edge(e: iglsynth.util.graph.Graph.Edge)

	Removes an edge from the graph.
An attempt to remove a non-existing edge will be ignored, with a warning.


	Parameters

	e – (Graph.Edge) Edge to be removed.










	
rm_edges(ebunch: Iterable[Graph.Edge])

	Removes a bunch of edges from the graph.
An attempt to remove a non-existing edge will be ignored, with a warning.


	Parameters

	ebunch – (Iterable over Graph.Edge) Edges to be removed.










	
rm_vertex(v: iglsynth.util.graph.Graph.Vertex)

	Removes a vertex from the graph.
An attempt to remove a non-existing vertex will be ignored, with a warning.


	Parameters

	v – (Graph.Vertex) Vertex to be removed.










	
rm_vertices(vbunch: Iterable[Graph.Vertex])

	Removes a bunch of vertices from the graph.
An attempt to remove a non-existing vertex will be ignored, with a warning.


	Parameters

	vbunch – (Iterable over Graph.Vertex) Vertices to be removed.










	
vertices

	Returns an iterator over vertices in graph.















          

      

      

    

 


  

    
      
          
            
  
Utilities


Spot Formulas







          

      

      

    

 


  

    
      
          
            
  
Solver Module API



	Overview

	solver.core

	solver.zielonka









          

      

      

    

 


  

    
      
          
            
  
Overview

Will be written..





          

      

      

    

 


  

    
      
          
            
  
Solver Module







          

      

      

    

 


  

    
      
          
            
  
Zielonka Solver





          

      

      

    

 


  

    
      
          
            
  
IGLSynth Examples



	Game on Graph from Scratch

	Game on Graph using TSys and LTL

	Defining Logic Formulas









          

      

      

    

 


  

    
      
          
            
  
Constructing a Game Graph

This example demonstrates how to construct a simple game on graph.
There are three ways to define a game on graph, namely



	By explicitly adding vertices and edges to the graph and marking the accepting states,


	By providing a transition system and a formal specification,


	By providing a game field and player objects.








Note

IGLSynth v0.2.2 only supports explicit construction of graph.




Define Game by Explicit Construction

The module iglsynth.game.game provides necessary classes to define a game on graph.
Hence, first import the game.game module:

from iglsynth.game.game import Game





Note that Game class defines a deterministic two-player zero-sum game on graph.

A Game can be either TURN_BASED or CONCURRENT.
For this example, let us consider a TURN_BASED game on graph shown in following image.

[image: Game graph from `EPFL Slides <http://richmodels.epfl.ch/_media/w2_wed_3.pdf>`_.]
First, instantiate a game object:

game = Game(kind=TURN_BASED)





Now, add the vertices and assign each vertex to a player.
When a vertex has turn = 1, player 1 (circle) will make a move.
When a vertex has turn = 2, player 2 (box) will make a move.

The vertex in a game (an instance of Game class) must be of type Game.Vertex or its derivative.
Hence, it is recommended to instantiate a new game vertex as game.Vertex:

vertices = list()
for i in range(8):
    if i in [0, 4, 6]:
        vertices.append(game.Vertex(name=str(i), turn=1))
    else:
        vertices.append(game.Vertex(name=str(i), turn=2))

game.add_vertices(vertices)





and mark the vertices 3, 4 as final:

# Set the states as final
v3 = vertices[3]
v4 = vertices[4]
game.mark_final(v3)
game.mark_final(v4)





Finally, add the edges to the game. Similar to vertices, we instantiate new edges as game.Edge objects:

# Add edges to the game graph
edge_list = [(0, 1), (0, 3), (1, 0), (1, 2), (1, 4), (2, 4), (2, 2), (3, 0), (3, 4), (3, 5), (4, 3),
             (5, 3), (5, 6), (6, 6), (6, 7), (7, 0), (7, 3)]

for uid, vid in edge_list:
    u = vertices[uid]
    v = vertices[vid]
    game.add_edge(game.Edge(u=u, v=v))





Now, given a game we invoke the ZielonkaSolver from iglsynth.solver.zielonka module
to compute the winning regions for players 1 and 2:

from iglsynth.solver.zielonka import ZielonkaSolver
solver = ZielonkaSolver(game)
solver.solve()





The solver.solve() runs the solver on the Game object game that encodes the game on graph.
The solution of solver can be accessed using the properties:

print(solver.p1_win)
print(solver.p2_win)





which returns the winning sets for P1 and P2.







          

      

      

    

 


  

    
      
          
            
  
Gridworld Problem: Game on Graph

This example demonstrates how to construct a game on graph using a Gridworld
transition system and an LTL specification for P1.

In general, there are three ways to define a game on graph, namely



	By explicitly adding vertices and edges to the graph and marking the accepting states,


	By providing a transition system and a formal specification,


	By providing a game field and player objects.







Presently, in IGLSynth v0.2.3, only first two are supported. See Gridworld Problem: Game on Graph
for an example of constructing game on graph by explicitly adding vertices and edges.


Define Transition System

To define a game using transition system and P1’s specification, first define the transition system.
In general, a transition system may be defined using TSys class.
In this example, we use a predefined Gridworld transition system from
iglsynth.game.gridworld module:

from iglsynth.game.gridworld import *

# Define transition system
tsys = Gridworld(kind=TURN_BASED, dim=(3, 3), p1_actions=CONN_4, p2_actions=CONN_4)
tsys.generate_graph()








Define LTL Specification

To define P1’s objective using an LTL specification, import the logic module:

from iglsynth.logic.ltl import *





An LTL formula is defined over an alphabet. Hence, we start by defining AP objects
using which we will construct an alphabet.

In this demo example, we will represent P1’s objective to reach to a goal. Such a reachability specification
can be written as \(\varphi = \Diamond a\) where \(a\) is an AP representing goal.
So, define the AP as:

GOAL = (0, 0)
a = AP("a", lambda st, *args, **kwargs: st.coordinate[0:2] == GOAL)





and the specification as:

spec = LTL("Fa", alphabet=Alphabet([a]))








Define Game Object

Given a transition system and specification, we will now define a game.
To define game, we require the game module:

from iglsynth.game.game import *





Now, instantiate and define a game as follows:

game = Game(kind=TURN_BASED)
game.define(tsys, spec)








Solve the Game

The final step is to invoke a solver to solve the game.
We will use Zielonka’s algorithm to solve the above game.
Note that Zielonka’s algorithm computes winning region for P1 in a
deterministic two-player zero-sum game.

In IGLSynth, Zielonka’s algorithm is implemented in zielonka module:

from iglsynth.solver.zielonka import ZielonkaSolver





To run the solver, first instantiate it and call the solve method:

solver = ZielonkaSolver(game)
solver.solve()





The solver.solve() runs the solver on the Game object game that encodes the game on graph.
The solution of solver can be accessed using the properties:

print(solver.p1_win)
print(solver.p2_win)





which returns the winning sets for P1 and P2.







          

      

      

    

 


  

    
      
          
            
  
Defining Logic Formulas

This example demonstrates how to define logic formulas using iglsynth.logic module.
Presently, IGLSynth defines three classes of logic formulas; namely atomic propositions AP,
propositional logic PL and linear temporal logic LTL.


Atomic Propositions

The most common use of logic formulas in IGLSynth is to define certain properties of a game on graph.
Hence, we define atomic propositions to be Callable objects over states (or vertices) of a graph.

An AP can be defined by providing a name:

a = AP(formula='a')





However, it is desirable to evaluate an AP at a given state.
This can be achieved by instantiating an AP in the following way:

# Define atomic proposition with evaluation function
@ap
def is_goal(st):
    return st == 10

# Define atomic proposition with evaluation function accepting extra arguments
@ap
def is_colliding(st, *args):
    obs = args[0]
    return st in obs

# Define atomic proposition with evaluation function accepting extra keyword arguments
@ap
def is_close(st, **kwargs):
    threshold = kwargs['threshold']
    return st - threshold < 10





Let us understand the three AP definitions given above.
The first AP, is_goal, accepts a state st as an input parameter and returns whether st == 10 or not.
It is imperative that an AP must return a bool.

In many cases, it is convenient to define a parameterized atomic proposition.
In such cases, the extra parameters can be passed to the AP’s evaluation function
as optional arguments args or optional keyword arguments kwargs.


Note

It is strongly recommended that AP’s function template to have *args, **kwargs as parameters.



Given an AP, it is possible to evaluate it at a given state:

res = is_goal(10)
res = is_goal(20)

res = is_colliding(10, [5, 10])
res = is_colliding(20, [5, 10])

res = is_close(5, threshold=10)
res = is_close(50, threshold=10)










Propositional Logic Formulas

Propositional Logic Formulas can be defined by instantiating PL class.
Similar to AP, a propositional logic formula can be defined by passing a formula string
containing only And(&), Or(|) and/or Negation(!) operators:

plf0 = PL("a & b")
plf1 = PL("a | b")
plf2 = PL("!a | b")





A PL formula is, generally, defined over an alphabet.
An alphabet is a set of atomic propositions.
To define a PL formula over alphabet, first define an alphabet:

@ap
def a(st, *args, **kwargs):
    return st == 10

@ap
def b(st, *args, **kwargs):
    return st in args[0]

sigma = Alphabet([a, b])





An important feature of alphabet is that it can be evaluated at a given state.
For example,:

result = sigma.evaluate(10, [10, 20])





returns a dictionary with keys as AP’s in alphabet and values as the result
of evaluating the AP at given state. In above case, result = {a: True, b: True}.


Note

Observe that evaluating an alphabet at a state is equivalent to computing the label
of that state.



Now, we can define a PL formula over an alphabet.

plf = PL("a & b", alphabet=sigma)





PL formulas can also be evaluated at a given state.

# PL is callable class
res = plf(10, [10, 20])

# Explicitly call evaluate function
res = plf.evaluate(10, [10, 20])





When a PL formula is evaluated at a given state, the alphabet is evaluated at that state. Then,
the APs in PL formula are substituted with the evaluated values to get back True or False.


Warning

Calling PL object like res = plf(10, [10, 20]) is currently failing.
See Bug Report Issue #17 [https://github.com/abhibp1993/iglsynth/issues/17].








Temporal Logic Formulas

(Linear) Temporal Logic formulas can be defined by instantiating LTL class.
Similar to PL, LTL formulas can be defined with/without providing an alphabet.

# Alphabet not provided.
ltlf0 = LTL(formula="Gp1 & !(p1 & X(p0 xor p1))")

# Alphabet provided
ltlf = LTL("F(a & Fb)", alphabet=sigma)











          

      

      

    

 


  

    
      
          
            
  
Release Notes


0.2.4 (Proposed)


	Solver module



	[Issue #24] Define Strategy class to represent deterministic and stochastic strategies.














0.2.3 ()


	Bugs



	[Issue #20] Automaton.Edge now returns an AP or PL class object for AP, PL, LTL.translate().


	[Issue #17] Unexpected AssertionError when calling PL(st=..) and LTL(st=..) is handled resolved.


	[Issue #16] Bug in the printing PL, LTL objects was resolved.









	Game module



	[Issue #6] Gridworld class accept p1_action and p2_action separately.


	[Issue #6] Gridworld class defined with basic 4, 5, 8, 9 connectivity.


	[Issue #23] Implement game.define(tsys, spec) function.


	[Issue #4] Defined Kripke class to support TSys class. No special properties or functions are
associated with Kripke are defined or implemented.


	[Issue #5] Updated TSys constructor signature to accept p1_action, p2_action instead of actions.
TSys.Vertex now requires name, turn parameters. turn = None represents a concurrent game.
TSys.Edge is updated to represent both concurrent and turn-based edges.









	Solver module



	[Issue #24] ZielonkaSolver class defined and implemented. The solver computes winning regions only.









	Utilities



	[Issue #11] Added has_vertex, has_edge, get_edges functionality to Graph class.














0.2.2 (17 November 2019)


	Docker images



	Updated latest and dev docker images on docker hub. The latest image now ships with iglsynth installed.


	Set up a GitHub - DockerHub webhook. All pushes to master branch will trigger a docker image build.









	Documentation



	Added two examples:



	Game graph construction


	Logic formula definition









	Added installation instructions.


	Fixed bugs in documentation.














0.2.1 (16 November 2019)


	
	Game module

	
	(core) Action class defined with “@action” decorator.


	(game) Game class defined to represent Deterministic 2-player Game.



	Game can be of two kinds: TURN_BASED or CONCURRENT.


	Game can be defined by constructing the game graph (i.e. using game.add_vertex, game.add_edge functions)

















	
	Logic module

	
	(core) ILogic class added as an interface class to define logic classes.


	(core) SyntaxTree class added to represent abstract syntax tree of an ILogic formula.


	(core) AP class added to represent atomic propositions.



	AP can be defined using decorator “@ap”.


	AP.__call__, AP.evaluate methods provide a way to check whether an AP is true/false in a given state.









	(core) PL class added to represent propositional logic formulas.



	PL.__call__, PL.evaluate methods provide a way to check whether the formula is true in a given state.


	PL.substitute provide a way to substitute APs in PL formula with their valuations (True/False) or other APs.









	(core) Alphabet class added to represent a set of APs.



	Alphabet.__call__, Alphabet.evaluate methods provide a way to get a label of a state.









	(ltl) LTL class is defined.










	
	Util Module

	
	(graph) Graph classes redefined.



	Defined “Vertex” and “Edge” base classes to define vertex and edge properties.


	Adding and removing vertices, edges is implemented.


	Accessing in/out neighbors/edges is implemented.

















	Documentation updated.







0.1.0 (07 August 2019)


	
	Game module

	
	Base class for writing different types of games is ready.


	Deterministic 2 player game is partially defined.










	
	Solver module

	
	Base class for writing solvers is partially ready.


	Zielonka attractor algorithm is implemented. Only a few configurations are supported.










	
	Utility module

	
	Graph class is ready.


	SubGraph class is ready.










	
	Examples

	
	An example from EPFL Slides [http://richmodels.epfl.ch/_media/w2_wed_3.pdf] is added.










	First release of IGLSynth










          

      

      

    

 


  

    
      
          
            

   Python Module Index


   
   e | 
   i
   


   
     		 	

     		
       e	

     
       	
       	
       examples	
       

     		 	

     		
       i	

     
       	[image: -]
       	
       iglsynth	
       

     
       	
       	   
       iglsynth.logic	
       

     
       	
       	   
       iglsynth.util	
       

   



          

      

      

    

  

    
      
          
            

Index



 A
 | E
 | F
 | G
 | H
 | I
 | N
 | O
 | R
 | S
 | T
 | V
 


A


  	
      	Action (class in iglsynth.game.core)


      	add_edge() (iglsynth.util.graph.Graph method)


  

  	
      	add_edges() (iglsynth.util.graph.Graph method)


      	add_vertex() (iglsynth.util.graph.Graph method)


      	add_vertices() (iglsynth.util.graph.Graph method)


  





E


  	
      	edges (iglsynth.util.graph.Graph attribute)


  

  	
      	examples (module)


  





F


  	
      	FALSE (in module iglsynth.logic.core)


  





G


  	
      	get_edges() (iglsynth.util.graph.Graph method)


      	Graph (class in iglsynth.util.graph)


  

  	
      	Graph.Edge (class in iglsynth.util.graph)


      	Graph.Vertex (class in iglsynth.util.graph)


  





H


  	
      	has_edge() (iglsynth.util.graph.Graph method)


  

  	
      	has_vertex() (iglsynth.util.graph.Graph method)


  





I


  	
      	iglsynth (module), [1]


      	iglsynth.logic (module)


  

  	
      	iglsynth.util (module)


      	in_edges() (iglsynth.util.graph.Graph method)


      	in_neighbors() (iglsynth.util.graph.Graph method)


  





N


  	
      	num_edges (iglsynth.util.graph.Graph attribute)


  

  	
      	num_vertices (iglsynth.util.graph.Graph attribute)


  





O


  	
      	out_edges() (iglsynth.util.graph.Graph method)


  

  	
      	out_neighbors() (iglsynth.util.graph.Graph method)


  





R


  	
      	rm_edge() (iglsynth.util.graph.Graph method)


      	rm_edges() (iglsynth.util.graph.Graph method)


  

  	
      	rm_vertex() (iglsynth.util.graph.Graph method)


      	rm_vertices() (iglsynth.util.graph.Graph method)


  





S


  	
      	source (iglsynth.util.graph.Graph.Edge attribute)


  





T


  	
      	target (iglsynth.util.graph.Graph.Edge attribute)


  

  	
      	TRUE (in module iglsynth.logic.core)


      	TURN_BASED (in module iglsynth.game.core)


  





V


  	
      	vertices (iglsynth.util.graph.Graph attribute)


  







          

      

      

    

  _static/down-pressed.png





_static/comment-close.png





_static/comment.png





_static/file.png





_static/minus.png





_static/down.png





_static/plus.png





_static/ajax-loader.gif





_static/comment-bright.png





_static/up-pressed.png





nav.xhtml

    
      Table of Contents


      
        		
          IGLSynth: Automatic Strategy Synthesis Library
        


        		
          Installation Instructions
          
            		
              Ubuntu 19.04 or above
            


            		
              Docker Image (other OS)
            


            		
              Docker Image for Developers
            


          


        


        		
          API Documentation
          
            		
              Game Module API
              
                		
                  Overview
                


                		
                  game.core
                


                		
                  game.game
                


              


            


            		
              Logic Module API
              
                		
                  Overview
                


                		
                  logic.core
                


                		
                  logic.ltl
                


              


            


            		
              Utilities API
              
                		
                  Overview
                


                		
                  game.graph
                


                		
                  game.spot
                


              


            


            		
              Solver Module API
              
                		
                  Overview
                


                		
                  solver.core
                


                		
                  solver.zielonka
                


              


            


          


        


        		
          Examples
          
            		
              Game on Graph from Scratch
              
                		
                  Define Game by Explicit Construction
                


              


            


            		
              Game on Graph using TSys and LTL
              
                		
                  Define Transition System
                


                		
                  Define LTL Specification
                


                		
                  Define Game Object
                


                		
                  Solve the Game
                


              


            


            		
              Defining Logic Formulas
              
                		
                  Atomic Propositions
                


                		
                  Propositional Logic Formulas
                


                		
                  Temporal Logic Formulas
                


              


            


          


        


        		
          Release Notes
          
            		
              0.2.4 (Proposed)
            


            		
              0.2.3 ()
            


            		
              0.2.2 (17 November 2019)
            


            		
              0.2.1 (16 November 2019)
            


            		
              0.1.0 (07 August 2019)
            


          


        


      


    
  

_static/up.png





